OmniFind, Part I: Add Sizzle to Your SQL
with OmniFind Text Search Server for
DB2 fori

Published Tuesday, 10 March 2009 19:00 by MC Press On-line [Reprinted with permission from
iTechnology Manager, published by MC Press, LP; http://www.mcpressonline.com.]

Written by Gene Cobb — cobbg@us.ibm.com

With this text search server, you can locate documents that contain
specific search strings whether they're in Excel, Word, PDF, PowerPoint,

etc.

V6R1 of the IBM i operating system introduced many exciting new features, including numerous DB2 for
i enhancements. One such enhancement that has flown somewhat under the radar is the IBM OmniFind
Text Search Server for DB2 for i. This new product gives you the power to perform both basic and
sophisticated text searching against data that is stored in your DB2 for i database tables. This article
introduces this new technology and shows you how to set it up and use it in your environment.

Most companies have important business information stored in a variety of ways. Certainly, a good
portion of this information is (or at least should be!) stored in your relational DB2 for i database.
However, a wealth of vital data is often stored in other non-relational formats as well. Sales figures and
charts in Excel spreadsheets, technical specifications in PDF files, job applicant resumes in Word
documents, and strategic initiatives defined in PowerPoint presentations are all good examples of this.
Wouldn't it be nice if all of this important, non-relational information could be consolidated in a single
relational database? Well, actually it can. Ever since V4R4, you have had the ability to store these types
of documents in Large Object Binary (LOB) columns in your database tables.

Hopefully, you're thinking that this notion of storing documents in your DB2 for i tables is a sound one.
But in case you aren't yet convinced, consider the following advantages:

e Organization: As mentioned previously, it is very common to have key business information
stored in various non-database file formats, such as PDF documents. Rather than have this vital
information strewn about various servers, file systems, and/or repositories, you can keep
everything organized and centralized in one place.

e Easy retrieval: When these data sources are stored in your database, you can leverage the
power of SQL to quickly and easily retrieve the rows the documents are in. For example, use the
product number to access both product inventory levels and the product specification PDF
document.

e Security: If your documents are scattered throughout your network, you may be exposing
sensitive data to those who should not be accessing it. Lock down these documents by using the
security features of both the IBM i operating system and DB2 for i. If this is a sensitive part
number and access needs to be restricted to a privileged few, you can leverage object-level
security and even row-level security (using SQL views) to lock it down.

e Asingle version of the truth: A common problem in many companies is multiple versions of "the
truth." That is, many versions of the same document can exist in various locations throughout
your organization. Which version is the master? Because of its ability to centralize and provide
easy yet secure access, the database is a logical choice for storing the master copy of your
documents. It may not always be possible to enforce a single version of truth, but at the very
least, you can establish company policies that require the master version be stored in the
database.

e IBM OmniFind for searching: You can now use this text search server to quickly locate
documents that contain specific search strings using advanced, linguistic search techniques.

Introducing OmniFind

The OmniFind Text Search Server is a new licensed program product (5733-OMF) that supports rapid
text searches on data stored in DB2 text columns or in documents such as PDF files. This provides the
same advanced technology previously available on other DB2 family products. OmniFind provides a set
of stored procedures to administer the environment, as well as two new integrated SQL functions
(SCORE and CONTAINS) that can be used in your SQL statements to specify and execute text-based
searches. This all means that OmniFind can be used to find text strings located both in your traditional
character fields as well as in documents stored in columns with data types such as LOB. What’s more,
there's no additional cost for the OmniFind Text Search Server: The product can be ordered at no charge
and support for the product is part of your IBM i Software Maintenance agreement.

For example, let's say you have a DB2 for i table called INVENTORY that contains information about the
all products you sell. Columns in the table include product_number, product_category, and
product_name. In addition, for each product, you also have a PDF file stored in a LOB column named
tech_spec_doc. Each PDF file contains all of the technical specification information for that particular
product. Now, let's say that you have a requirement to find all products containing the string
"headphones" in the PDF document. The "OmniFind-infused" SQL statement would look something like
this:

SELECT product number, product name
FROM inventory
WHERE CONTAINS (tech spec doc, 'headphones') =1

With this type of database design and integrated search capability, your DB2 for i database just became
even more powerfull

OmniFind Text Indexes

The foundation of the OmniFind technology is the text indexes that are built over the data in the
column. These text indexes can be created over a variety of data types that contain plain text, HTML,
XML, or many different rich document types. A list of supported data types and rich document types is
shown in the table below:

Supported DB2 Data Types and Document Format Types

Supported Column Data Types | Supported Document Format Types

e BINARY e Plain text

e VARBINARY e XML

e BLOB e HTML

e CHAR

e VARCHAR

e CLOB INSO Document Formats
e DBCLOB

e GRAPHIC e Adobe PDF

Rich-Text Format (RTF)
JustSystems Ichitaro
Microsoft Excel
Microsoft PowerPoint
e Microsoft Word

e lotus 123

e Lotus Freelance

e Lotus WordPro

e OpenOffice 1.1 and 2.0
e OpenOffice Calc

e Quattro Pro

e StarOffice Calc

e VARGRAPHIC

If you have experience with DB2 for i or any other relational database, you are probably well acquainted
with database indexes and their many benefits. The traditional indexes by DB2 for i are binary radix and
encoded vector index (EVI). They are used by the database engine for statistical information when
formulating an optimal access plan and during the data access implementation. You have probably
created many keyed logical files over your physical files and used these indexes in your RPG and COBOL
programs. However, the text indexes used by OmniFind are not to be confused with these traditional
database indexes. For starters, they are not part of the DB2 for i database. The text indexes actually
reside on the text search server within the Integrated File System (IFS). This text search server is created
during the product installation process and runs locally in the PASE environment. Once up and running,
it communicates with the database via TCP/IP sockets. This environment is shown in Figure 1.

IFS

/QOpenSys/QIBM/ProdData/TextSearch/

DB2 fori

Figure 1: This is the text index architecture.

Another key difference from their DB2 for i counterparts is that the text indexes are not automatically
maintained. This is for performance reasons: updating a text-search index can be an extensive process,
and keeping it synchronized with table changes automatically could have adverse effects on database
performance. Consequently, different approaches to text-index maintenance can be implemented. I'll
discuss these later in the article.

Lastly, these indexes cannot be journaled, are not protected by IBM i system-managed access-path
protection (SMAPP), and are not backed up using the traditional object-level save commands, such as
SAVOBJ and SAVLIB.

Administrative Stored Procedures
The administrative stored procedures are used to enable and disable text searching and to create,
update, and drop text indexes. In this section, | will cover each of these stored procedures.

SYSTS_START: Start Text Search Support
Call the SYSTS_START stored procedure to start the text server and enable text search support. The text
search server must be enabled for any OmniFind searches to complete successfully.

SYSTS_CREATE: Create a Text Index

The SYSTS_CREATE stored procedure creates a text index for the specified text column, thereby enabling
text search indexing for that column. A call to this procedure results in the creation of an object in the
IFS text server directory. It also performs the following tasks:

e Creates a view with the same name as the text search index

e (Creates a staging table in the QSYS2 schema

e Adds After-Insert, After-Update, and After-Delete triggers to the base table. (I'll explain the roles
of these triggers later.)

e Updates the system catalogs with information about the new index

Be aware that calling SYSTS_CREATE does not populate the text index.

An example of calling the SYSTS_CREATE procedure is shown below:

CALL SYSPROC.SYSTS CREATE (
'myschema’,
'resumes indx',
'myschema.resumes (applicant resume) ',
'"FORMAT INSO
UPDATE FREQUENCY D(*) H(0) M(0)")

These are the parameters for this stored procedure:

The schema of the text search index
The name of the text search index

3. The table and column specification for the document text source (the table schema, table name,
and column name)

4. Options

In our example, | specified a couple of values in the Options parameter. The first one is the format. This
specifies the content type of the text documents that you intend to index and search. Possible values for
this setting are these:

e TEXT
e HTML
e XML

e |NSO: This value instructs the OmniFind Text Search Server to determine the format. The format
can be any of the supported INSO document formats listed in the table shown at the beginning
of this article.

Note: All of the documents in an indexed text column must be of the same format (TEXT, HTML, XML, or
INSO). However, if you specify INSO format, the index column can contain multiple document formats
(DOC, PDF, XLS, etc.).

Also notice the specification of the "Update Frequency" clause in the above example. This is a purely
optional setting that can be used to schedule index updates on the IBM i Job Scheduler. If specified, an
entry is placed in the Job Scheduler using the ADDJOBSCDE command. In the above example, the
asterisk specified in the Day (D) parameter indicates that the index will be updated every day. If you do
not want to schedule your index updates, the alternative would be manual updates by calling the
SYSTS_UPDATE procedure.

SYSTS_UPDATE: Update a Text Index

As mentioned, creating the index does not populate it with data. For that, the stored procedure
SYSTS_UPDATE must be called. The first time this stored procedure is called for a specific text index, all
of the documents (or text strings) from the indexed column are processed and added to the text search
index. This initial update requires a full scan of the base table and is depicted in Figure 2.

SYSTS_UPDATE Initial Update for a Text Index — TEXTIX1

Triggers

Staging Table

Table (QDBTS")

Key Document

R
Data A e .. A Status Type Key

Document #1 -
After Delete

Document #2 Tex‘ seafc,l semr

Initial Update

Figure 2: The initial update scans the base table.

While this technique is acceptable for the initial population of the index, a more efficient method is
employed to synchronize the index with future document changes to the base table. Recall that when a
text index is created, database triggers are added to the base table and a staging table is created. These
triggers fire whenever a change occurs over the indexed column in the base table, and they log the
information about this incremental update to the staging table.

Because all of these incremental updates are sent to the staging table, subsequent calls to
SYSTS_UPDATE result in the processing of the staging table. This is more efficient because it eliminates
the need for a full scan of the base table. Instead, only the rows in the staging table are read. The
staging table contains the base table key, so each row is joined back to the base table and the text index
is updated. This more-resourceful technique is show in Figure 3.

SYSTS_UPDATE Incremental Update for a Text Index — TEXTIX1

Triggers

Stagling Tlable

Table (QDBTS")

Key Document

\
Data .. E Status Type Key

Document #1 -
After Delete

Doocument #2 Text Search Server

Figure 3: In an incremental update, only the rows in the staging table are read.

If the index was created with the UPDATE FREQUENCY clause, incremental updates will be performed
via an IBM i job scheduler entry.

SYSTS_DROP: Drop a Text Index
If you need to drop the text index, the SYSTS_DROP stored procedure will do the trick. This procedure
has two parameters: text index name and schema.

If a job scheduler entry was added via the UPDATE FREQUENCY clause, calling this procedure will
remove that job scheduler entry for the specified index.

SYSTS_STOP: Stop Text Search Support

As you might have guessed, calling the SYSTS_STOP procedure disables the text search support. While
the text search server is down, all SQL requests that include OmniFind built-in functions will fail.
However, because database triggers are handling changes to the base tables, all changes continue to be
logged to the staging tables.

Searching Using the Built-In Functions
The OmniFind product provides two easy-to-use, integrated built-in functions to help you locate the
search strings buried in documents and text fields: CONTAINS and SCORE.

Note: The CONTAINS and SCORE functions are only supported by the SQL Query Engine (SQE).

The CONTAINS function is pretty simple: It accepts (as input parameters) the name of the column, a
search argument, and an optional parameter for advanced search options. It searches a text index for
the search argument and returns a 1 if a match was found for that row. Otherwise, a 0 is returned.

The following example returns all rows in the INVENTORY_TECH_DOCS table that contain the search
argument 'Turntable' in the document stored in the tech_spec_doc column:

SELECT productnumber, productname
FROM inventory tech docs
WHERE CONTAINS (tech spec doc, 'Turntable')=l1

The SCORE function is similar to CONTAINS, but it actually returns a relevance score that is based on
how well a document matches the search argument. A higher score would indicate that more matches
were found. The result of SCORE is always a floating decimal value between 0 and 1.

Just like CONTAINS, its input parameters are the name of the column, a search argument, and options.
SCORE is often specified as the first ORDER BY column (in descending order) so that the result set shows
the top matching rows first. It can also be used in the WHERE clause of a SELECT statement to show only
the matches that are higher than a specified minimum value. Because the score is returned as a floating
decimal between 0 and 1, you can improve the readability by multiplying the value by 100 and
converting it to an integer. An example of this is shown below:

SELECT INTEGER (SCORE (tech spec doc, 'Turntable')*100)
productnumber, productname

FROM inventory tech docs

WHERE SCORE (tech spec doc, 'Turntable') > .25

ORDER BY SCORE (tech spec doc, 'Turntable') DESC

Once the SQL statement with CONTAINS and/or SCORE is submitted, the search key and options are sent
to the Text Search Server. The results are returned to the invoking SQL function. This process is shown in
Figure 4.

Search Processing

Search key & options 1ext Search Server

sent to the server

User/Application submits

search using SQL functions:

CONTAINS or SCORE

Results returned to the
invoking SQL function

Figure 4: This is how OmniFind search processing works.

Advanced Searching
The above examples are ways you can perform simple searching. In addition, OmniFind allows you to
perform more-sophisticated types of text searching:

e AND

e OR

e NOT

e Exact Match

e Wildcard

e Score Boosting
e Includes

e Excludes

e Escape Characters

These operators allow you to extend your searching capabilities and provide your users with ways to
find exactly what they are looking for. Some complex query examples are shown in the table below:

Advanced Searching Examples

Operators

Examples

Query Results

"Java Programming

Returns documents that contain the exact phrase

Language" "Java Programming Language."
(Exact Match)
AND SQL AND Returns documents that contain both the term SQL
and the exact phrase "Java Programming Language."
Java Programming The AND operator is the default conjunction
Language operator. If no logical operator is between the two
terms, the AND operator is used.
OR "Java Programming Returns documents that contain either the exact
Language" OR Java phase "Java Programming Language" or just Java.
NOT SQL NOT Java Returns documents that contain SQL but not Java.
() (SQL OR Java) AND XML Returns documents that contain XML and either SQL

or Java . The parentheses ensure that XML is found
and either SQL or Java is present.

An Example Implementation

To best illustrate how to set up an OmniFind environment, let's go through an example.

We will take the following steps to configure an OmniFind text search example:

vk wN e

Add a LOB column to a table
Load PDF documents into the LOB column
Start the OmniFind text search server
Create and update the text index

Use OmniFind functions in SQL statements

Step 1: Add a LOB Column to a Table

As mentioned previously, LOB column support was added in V4R4. However, support for these data

types is restricted to SQL only. This means that you cannot create a LOB column using the Data

Description Specifications (DDS) language. It also means that you cannot read a table with a LOB column
using native record-level access (RLA) in high-level language (HLL) programs such as RPG and COBOL.

SQL is IBM's strategic database language and, as such, is the only interface on the IBM i that provides
support for creating and accessing columns with this data type.

To add a LOB column, you have two choices: you could alter an existing table by adding a new column,
or you could create a brand new table. See the following examples on how to add a new LOB column.

Note: OmniFind requires that the table have a primary key, unique key constraint, or ROWID column.
New INVENTORY table:

CREATE TABLE inventory tech docs (
prod num CHAR(4) NOT NULL DEFAULT '' ,
TECH_SPEC_DOC BLOB(524288000) DEFAULT NULL,
CONSTRAINT INVENTORY PRODUCTNUMBER

PRIMARY KEY (prod num))

Existing INVENTORY table:

ALTER TABLE inventory
ADD COLUMN tech spec doc BLOB (524288000)
DEFAULT NULL

If you choose the ALTER TABLE method to change the structure of an existing table, the following should
be considered:

e Existing programs that use native record-level access (RLA) to read the physical file will
experience runtime errors. Because SQL is the only interface that supports LOB columns, any
programs with RLA access will not be able to read the file. The only workaround for this is to
create logical files or SQL views that exclude the LOB column over the physical file. You would
then need to change your programs to read the logical file/view instead.

e Altering a table this way will generate a new format ID (FID) and could necessitate recompilation
of programs that use native RLA.

To minimize the potential impact on existing applications, it is recommended that you create a new
table with the LOB column. This table would simply be an extension to your existing base table. Join
logic could be used to logically merge the two tables together.

Our example uses this type of implementation. From an SQL interface such as the System i Navigator
Run SQL script window, enter the following SQL statement:

CREATE TABLE inventory tech docs (
productnumber CHAR(4) NOT NULL DEFAULT '' ,
TECH_SPEC_DOC BLOB (524288000) DEFAULT NULL,
CONSTRAINT INVENTORY_PRODUCTNUMBER

PRIMARY KEY (productnumber))

Next, create an SQL view that joins the INVENTORY table to the new INVENTORY_TECH_SPECS table:

CREATE VIEW inventory omf AS (
SELECT a.prod num, a.prodname FROM inventory a
INNER JOIN inventory tech docs b ON a.prod num = b.prod num)

Because we did not alter the original INVENTORY file, the programs that use RLA to access this file are
not impacted. We can simply use the new INVENTORY_OMF view for all OmniFind-enabled SQL
statements.

Step 2: Load Documents into LOB Column

Once you have a table with a LOB column, you can load documents into the column. For this exercise, |
mapped a network drive (Q) to my IFS and copied my product technical specification PDF documents
into the IFS directory /fomniFind/. The name of each PDF file is the product number of the corresponding
product. For example, the document for product number 1015 is 1015.pdf. These documents can be
seen in Figure 5.

~’omniFind Q@E
File Edit View Favorites Tools Help iLinks
@Back -) - (¥ | O search ‘ Folders ‘ R

Address &3 Q:\omniFind ¥ | led Go

Folders X Name Size| Type

%) M3BE ~ E 1002.pdf 35KB Adobe Acrobat Document
s £ omnifind 211003.pdf 22 KB Adobe Acrobat Document
DLS 71011 pdf 34KB Adobe Acrobat Document
»2Q 8§ T51015.pdf ! 26 KB Adobe Acrobat Document
® [0 QFileSvr.400 T11021.pdf 28 KB Adobe Acrobat Document
) QFPNWSSTG T21022.pdf 44 KB Adobe Acrobat Document
= |3 QIBM 1023.pdf 34 KB Adobe Acrobat Document
® |3 QNTC T11024.pdf 21 KB Adobe Acrobat Document
® |3 QOpenSys T1025.pdf 29 KB Adobe Acrobat Document
@ 3 QOPT
® 23 QSR
© 3 QSYS.LIB e =

Figure 5: The PDF files are copied to the IFS directory.

Each PDF file is a technical speciation document for a product and is named by the product number.
Every product is represented in the INVENTORY table and has a unique key by the PRODUCT_NUMBER
column. So what we want to do is load each PDF document into the row for that specific product
number. To do this, we need to write a program. This program will need to know what documents are in
this IFS directory. Consequently, we need to create a physical file that contains this information.

The following CL program uses the QSHELL command LS to read the contents of the IFS directory
J/omniFind and populates a physical file named DOCS_LIST (in library QGPL). Each row in DOCS_LIST
contains the name of the PDF document in the directory. DOCS_LIST will be read later when loading the
documents into the LOB column.

PGM

DCL VAR (&LSCOMMAND) TYPE (*CHAR) LEN (200)
DCL VAR (&LIBRARY) TYPE (*CHAR) LEN(10)
DLTF FILE (QGPL/DOCS LIST)

MONMSG MSGID (CPF0000)

CRTPF FILE (QGPL/DOCS LIST) RCDLEN (200)

CHGVAR VAR (&LSCOMMAND) VALUE ('LS /omniFind/ > +
/QSYS.LIB/QGPL.LIB/DOCS LIST.FILE/DOCS LIST.MBR')

QSH CMD (&LSCOMMAND)

ENDPGM

Next, issue the following command to compile the program:

CRTBNDCL PGM(LISTIFSDIR) SRCFILE (QCLSRC) SRCMBR(LISTIFSDIR)

Now, run the program:
CALL PGM(LISTIFSDIR)

At this point, we have a physical file named DOCS_LIST that contains the names of the documents in the
J/omniFind directory. The following program can be used to read this file, extract the product number
from the document name, and use the product number to find the matching row in the INVENTORY
table. If a matching row is found, the PDF document is loaded into the BLOB column and the row is
updated. This RPG program (named LOADINV) is shown below:

D MYFILE S SQLTYPE(BLOB_FILE)
D selectStm) 256
d inv_docs row ds qualified
d filename

200
D SQL FILE READ...
D c const (2)
D SQL FILE CREATE...
D c const (8)
D SQL FILE OVERWRITE...
D c const (16)
D SQL FILE APPEND...
D c const (32)
D work prod num S 200

/free
selectStm =

'SELECT docs_list FROM docs_ list';
EXEC SQL PREPARE S1 FROM :selectStm;
EXEC SQL DECLARE Cl CURSOR WITH RETURN TO CLIENT FOR S1;
EXEC SQL OPEN C1;
dow sglcod <> 100;
EXEC SQL
FETCH cl INTO :inv_docs row;
if sglcod = 100;
leave;
endif;
// Set the name of the file to load into the column and
// set the file options setting to SQL FILE READ. This
// tell DB2 to load the file into the column whenever an
// INSERT or UPDATE is issued
MYFILE name = '/omniFind/' + %$trim(inv_docs_row.filename) ;

MYFILE nl = %len (%trimr (MYFILE name));
MYFILE fo = SQL FILE READ;
// Extract the product number from the name of the document
// This is used as the product number (unique key)
// Insert a new row into the inventory tech docs table
work prod Num = %subst (%trim(inv_docs row.filename) : 1 : 4);
EXEC SQL
INSERT INTO inventory tech docs(prod num, tech spec doc)
VALUES (:work prod num, :MYFILE);
enddo;
EXEC SQL CLOSE cl;
return;
/end-free

After saving this source file member, create the program by issuing the following command from a
command line:

CRTSQLRPGI OBJ (LOADINV) SRCFILE (QRPGLESRC) SRCMBR (LOADINV)
Next, run the program to load the documents into the LOB column:
CALL PGM (LOADINV)

Now, the PDF documents can be deleted from the IFS directory.

Step 3: Start the Text Search Server

At this point, the TECH_SPEC_DOC column of the INVENTORY_TECH_DOCS table contains the
appropriate PDF document, and the OmniFind-specific tasks can begin. First, make sure the text search
server is enabled. From an SQL interface, issue the following statement:

CALL SYSPROC.SYSTS START () ;

Step 4: Create and Update the Text Search Index

The next step is to create the text index over the new LOB column. The schema (library) that holds the
tables and views is named DATALIB. We will use this schema as the first parameter in the stored
procedures to create, update, and drop the text index. The name of our text index will be
INV_DOCS_IDX. From an SQL interface, issue the following SQL statement:

CALL SYSPROC/SYSTS_CREATE(’DATALIB’,'INV_DOCS_IDX',
'DATALIB.INVENTORY TECH DOCS (TECH SPEC DOC) ',
'CCSID 37 FORMAT INSO')

Immediately populate the index by issuing the following SQL statement:

CALL SYSPROC/SYSTS UPDATE ('DATALIB', 'INV_DOCS IDX', '')

If you need to drop the index for any reason, issue the following SQL statement:

CALL SYSPROC/SYSTS DROP ('DATALIB ', 'INV _DOCS IDX')

Step 5: Searching (Use OmniFind Functions in SQL Statements)
At last everything is in place, and the fun part (searching) can begin. Let's say we want to find all
technical specification documents in our table that contain the text string

'CD-RW'. We want see the text search score, the product number, and the product name, and we want
to sort the list in descending order of the text search score. The following SQL statement would satisfy
this requirement:

SELECT INTEGER (SCORE (tech spec doc, 'CD-RW') * 100) AS search score,
productnumber, productname

FROM inventory omf

WHERE CONTAINS (tech spec doc, 'CD-RW')=1

ORDER BY SCORE (tech spec doc, '"CD-RW') DESC

Notice that we used the SQL view INVENTORY_OMF for this statement. Recall that this view is a join of
the INVENTORY table and the INVENTORY_TECH_DOCS table, so it provides an easy interface to access
the product name column. The results of this request are shown in Figure 6.

SEARCH_SCORE | PRODUCTMHUMBER. PRODCTHAME
331025 Multichannel Super Audio CD Player
231021 D Changer [CD Player
191023 400 Disc Super Audio CO Changer

Figure 6: Here are our sample query results.

Additional Information
Obviously, there is much more about OmniFind than could be covered in this article.

A wealth of information can be found in the document "e-business and Web serving OmniFind Text
Search Server for DB2 for i5/0S V1.1." It can be downloaded from the IBM i InfoCenter Web site.

But here are several more key points to know about the product:

e |tis the strategic replacement for the DB2 for i Text Extender product.
e Its searching algorithms allow for linguistic variations of words. For example, the following SQL
statement :

SELECT author, story FROM books
WHERE CONTAINS (story, 'mice chasing cats') =1
returns matches for such variations as "mouse", "mice",

"chase", "chased", "chasing", "cat" and "cats"

Another powerful word variation feature is the ability to match on abbreviations and acronyms. For
example, a search argument of ‘lowa’ would return a match even when a document only contains ‘1A’ -

that state’s two character abbreviation. Similarly a search argument of “United States” would return
matches for documents containing ‘USA’.

e |t provides XML searching capability. While the other members of the DB2 family support the
indexing of XML documents, DB2 for i does not because it does not support the XML data type.
However, you can use OmniFind to perform full text searching (targeting specific tags and
attributes) on XML documents that are stored in a LOB column of a DB2 for i table.

e Storing the documents in DB2 for i tables is not required. You can set up an environment in
which OmniFind can index and search documents stored on the IFS.

OmniFind supports 26 languages (including some double-byte languages, such as traditional Chinese):
Arabic, Czech, Danish, German (Switzerland), German (Germany), Greek, English (Australia), English
(United Kingdom), US English (United States), Spanish (Spain), Finnish, French (Canada), French (France),
Italian, Japanese, Korean, Norwegian Bokmal, Dutch, Norwegian Nynorsk, Polish, Brazilian Portuguese,
Portuguese (Portugal), Russian, Swedish, Simplified Chinese, and Traditional Chinese.

Summary

We have covered a lot of ground in this article. You should now be familiar with the benefits of storing
your document in LOB columns, understand how to load documents into these columns, and be armed
with the knowledge to set up and use the OmniFind product to perform document text searches against
these documents. One thing that you may have noticed is that we are missing a graphical interface to
perform these searches and actually open one of the matching documents. In Part Il of this article, | will
show you how to do this by integrating OmniFind with the DB2 Web Query for IBM i product.

